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Abstract. An investigation has been made of ion-acoustic solitary waves in an unmagnetized nonthermal
plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. The properties
of stationary solitary structures are briefly studied by the pseudo-potential approach, which is valid for
arbitrary amplitude waves, and by the reductive perturbation method which is valid for small but finite
amplitude limit. The time evolution of both compressive and rarefactive solitary waves, which are found
to coexist in this nonthermal plasma model, is also examined by solving numerically the full set of fluid
equations. The temporal behaviour of positive (compressive) solitary waves is found to be typical, i.e., the
positive initial disturbance breaks up into a series of solitary waves with the largest in front. However, the
behaviour of negative (rarefactive) solitary waves is quite different. These waves appear to be unstable and
produce positive solitary waves at a later time. The relevancy of this investigation to observations in the
magnetosphere of density depressions is briefly pointed out.

PACS. 52.35.Fp Electrostatic waves and oscillations (e.g., ion-acoustic waves) – 52.35.Sb Solitons; BGK
modes – 52.35.Mw Nonlinear waves and nonlinear wave propagation (including parametric effects, mode
coupling, ponderomotive effects, etc.)

1 Introduction

Nonlinear propagation of electrostatic disturbances in
space and laboratory plasmas has received a considerable
attention and been extensively studied in last few years
[1–6]. It has been found both theoretically and experimen-
tally that only positive (compressive) solitary waves (soli-
tary waves with positive potential or with density hump)
exit in two component plasmas, but the system does not
support any negative (rarefactive) solitary waves (solitary
waves with negative potential or with density dip). Obser-
vations made by the Viking spacecraft [7] and Freja satel-
lite [8] have found electrostatic solitary structures in the
magnetosphere with density depressions. Sometimes these
are associated with small scale lower hybrid turbulence, in
which case they can be explained as cavities generated by
the ponderomotive force of the lower hybrid waves. How-
ever, sometimes they have no turbulence associated with
them. Recently, motivated by the latter class of events,
Cairns et al. [9,10] have considered a nonthermal plasma
model and shown that the presence of a nonthermal dis-
tribution of electrons may change the nature of ion sound
solitary structures and allow the existence of structures
very like those observed by the Freja and Viking satellites
[7,8]. The present study has considered the nonthermal
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plasma model of Cairns et al. [9,10] and mainly extended
these recent investigations [9,10] to time evolution of these
electrostatic solitary structures in nonthermal plasmas by
solving numerically the full set of fluid equations.

The manuscript is organized as follows. The basic
equations governing the nonthermal plasma model un-
der investigation are given in Section 2. The arbitrary
amplitude compressive and rarefactive ion-acoustic soli-
tary structures are briefly studied by pseudo-potential ap-
proach in Section 3. The small but finite amplitude limit is
then considered in Section 4. The time evolution of these
solitary structures are investigated in Section 5. Finally, a
brief discussion is presented in Section 6.

2 Governing equations

We consider a plasma system consisting of an inertial ion
fluid and nonthermally distributed electrons. The basic
system of equations governing the ion dynamics in this
plasma system is given by [9,10]
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where n is the ion density normalized to the unperturbed
ion density n0; u is the ion fluid velocity normalized to
the ion-acoustic speed Cs = (KBTe/m)1/2 with Te, KB

and m being the electron temperature, Boltzmann con-
stant and ion mass, respectively; ϕ is the electrostatic po-
tential normalized to KBTe/e with e being the electronic
charge; β = 4α/(1+3α) with α being the parameter deter-
mining the number of nonthermal electrons present in our
nonthermal plasma model [9–11]; the space variable (x) is
normalized to the Debye length λD = (KBTe/4πn0e

2)1/2

and the time variable (t) is normalized to the ion plasma
period ω−1

p = (m/4πn0e
2)1/2.

3 Arbitrary amplitude solitary structures

To study time-independent solitary structures, we make
all the dependent variables depend only on a single vari-
able ξ = x−Mt (where ξ is again normalized to λD and M
is the Mach number, soliton velocity/Cs), use the steady
state condition, impose the appropriate boundary condi-
tions (namely n → 1, u → 0, ϕ → 0 and dϕ/dξ → 0 at
ξ → ±∞) and reduce our basic equations (1–3), to the
“energy integral” [9,10]:

1
2

(
dϕ
dξ

)2

+ V (ϕ) = 0, (4)

where the Sagdeev potential [12] for our purposes reads

V (ϕ) = 1 + 3β +M2 −M2(1− 2ϕ/M2)1/2

− [1 + 3β(1− ϕ) + βϕ2]eϕ. (5)

It is clear from (5) that V (ϕ) = 0 and dV (ϕ)/dϕ = 0
at ϕ = 0. Therefore, solitary wave solutions of (4) exist if
(i)
(
d2V/dϕ2

)
ϕ=0

< 0, so that the fixed point at the origin
is unstable and (ii)

(
d3V/dϕ3

)
ϕ=0

> (<) 0 for compressive
(rarefactive) solitary waves. The nature of these solitary
waves, whose amplitude tends to zero as the Mach number
M tends to its critical value, can be found by expanding
the Sagdeev potential to third order in a Taylor series in ϕ.
The critical Mach number is that which corresponds to the
vanishing of the quadratic term. At the same time, if the
cubic term is negative, there is a potential well on the neg-
ative side and if the cubic term is positive, there is a poten-
tial well on the positive side. Therefore, by expanding the
Sagdeev potential V (ϕ), given by (5), around the origin
the critical Mach number, at which the second derivative
changes sign, can be found as Mc =

√
(1 + 3α)/(1− α)

and at this critical value of M the third derivative is neg-
ative, i.e., both the compressive and rarefactive solitary
waves exist if α > (

√
3− 1)/(3 +

√
3) ' 0.155. The upper

limit ofM can be found by the condition V (ϕc) ≥ 0, where
ϕc = M2/2 is the maximum value of ϕ for which the ion
density n is real. Thus, on using (5) this upper limit of M ,
for α = 0.2, can be found as 1.6. Clearly, in nonthermal
plasma with α = 0.2, finite amplitude ion-acoustic soli-
tary waves exist for 1 < M < 1.6. The nature of these
compressive and rarefactive solitary waves are discussed
in more detail by Cairns et al. [9,10].

4 Small amplitude limit: K-dV solitons

To study small but finite amplitude ion-acoustic solitary
waves in our plasma model, we construct a weakly non-
linear theory of the ion-acoustic waves which leads to the
scaling of the independent variables through the stretched
coordinates [13]

ξ = ε1/2(x− v0t),

τ = ε3/2t, (6)

where ε is a small parameter measuring the weakness of
the dispersion, v0 is the wave phase velocity normalized
to Cs. We can expand the perturbed quantities n, uz, and
ϕ about their equilibrium values in power of ε as [13]

n = 1 + εn(1) + ε2n(2) + · · ·
ux = 0 + εu(1)

x + ε2u(2)
x + · · ·

ϕ = 0 + εϕ(1) + ε2ϕ(2) + · · · (7)

Now, using equations (6, 7) in equations (1–3) and fol-
lowing reference [13] one can obtain a nonlinear equation,
known as Korteweg-de Vries (K-dV) equation, as
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where a and b are given by
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√
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1
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,

Sα = 1− 1
3(1− β)2

· (9)

The steady state solution of this K-dV equation is ob-
tained by transforming the independent variables ξ and τ
to η = ξ − u0τ and τ = τ , where u0 is a constant velocity
normalized to Cs, and imposing the appropriate boundary
conditions, viz., ϕ→ 0, dϕ(1)/dη → 0, d2ϕ(1)/dη2 → 0 at
η → ±∞. Thus, one can express the steady state solution
of this K-dV equation as

ϕ(1) = ϕ(1)
m sech 2[(ξ − u0τ)/δ], (10)

where the amplitude ϕ(1)
m and the width δ (normalized to

λD) are given by

ϕ(1)
m = 3u0/a,

δ =
√

4b/u0. (11)

It is found that either compressive (ϕ(1)
m > 0) or rarefac-

tive (ϕ(1)
m < 1) solitary waves may exist depending on

whether a is positive or negative. As β is always less than
1, it is obvious that there exists compressive solitary waves
when Sα > 0 and rarefactive solitary waves when Sα < 0.
It is seen that there exists compressive (rarefactive) soli-
tary waves when α < (>) 0.155. It is also obvious that as
we increase u0, the amplitude of these solitary structures
increases whereas their width decreases.
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5 Time-dependent solitary structures

We now investigate the propagation of an initial pertur-
bation by a numerical solution of our original set of fluid
equations (Eqs. (1–3)). In this numerical simulation we
have used the Lax-Wendroff difference scheme where time
difference ∆t and space difference ∆x are 0.05 and 0.10,
respectively. The two initial pulses, which are used in this
numerical simulation, are of the form

ϕ(x, 0) =

{
±0.025 sech2(x− 20),
±0.025 exp[−(x/2− 10)2].

(12)

Though these initial pulses are not stationary solutions,
we use the following stationary solutions for the other ini-
tial quantities:

u(x, 0) = V0[1− (1− 2ϕ/V 2
0 )1/2], (13)

n(x, 0) = (1− 2ϕ/V 2
0 )−1/2, (14)

where V0 is the velocity of the initial pulse. The value
of this V0 is chosen to be 0.773 for α = 0 (which is
nearly equal to the velocity of the solitary wave of am-
plitude 0.025 for α = 0) and 0.975 for α = 0.2 (which
is close to the velocity of the solitary wave of amplitude
0.025 for α = 0.2). We now study the time evolution of
the solitary structures by solving numerically our orig-
inal set of fluid equations (Eqs. (1–3)), with the initial
pulses given by (12), for Maxwellian (α = 0) and non-
thermal (α = 0.2) distribution of electrons. The numer-
ical results are displayed in Figures 1–6. The numerical
simulation in Figures 1 and 2 considers the Maxwellian
electron distribution (α = 0) and shows how two differ-
ent types of initial perturbation, viz. 0.025 sech 2(x − 10)
and 0.025 exp[−(x/2−10)2], evolve with time, whereas the
numerical analyses in Figures 3–6 assume the nonthermal
electron distribution (α = 0.2) and illustrate how these
two types of initial pulse, with their positive and nega-
tive forms, evolve with time. The behaviour in Figures 1–3
and 5 seems typical of the compressive solitary waves. The
initial disturbance breaks up into a series of solitary waves
with the largest in front. The behaviour of the rarefactive
solitary waves shown in Figures 4 and 6 is quite different.
These waves appear to be unstable and produce compres-
sive waves at a later time. This behaviour, of course, rather
casts doubt on our suggestion that such waves are ob-
served, though it is possible that three dimensional struc-
tures could be more stable. This is a question which we
have not examined.

6 Discussion

Electrostatic ion-acoustic solitary structures (in a non-
thermal plasma consisting of inertial ion fluid and non-
thermally distributed electrons) has been investigated by
pseudo-potential approach (which is valid for arbitrary
amplitude waves), reductive perturbation method (which
is valid for small but finite amplitude limit) and numerical

Fig. 1. Time evolution of the initial perturbation, 0.025×
sech 2(x − 20), for α = 0 and V0 = 0.773. The lower view
is the contour map of the upper plot.

Fig. 2. Time evolution of the initial perturbation, 0.025×
exp[−(x/2 − 10)2], for α = 0 and V0 = 0.773. The lower view
is the contour map of the upper plot.
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Fig. 3. Time evolution of the initial perturbation, 0.025×
sech 2(x − 20), for α = 0.2 and V0 = 0.975. The lower view
is the contour map of the upper plot.

Fig. 4. Time evolution of the initial perturbation, −0.025×
sech 2(x − 20), for α = 0.2 and V0 = 0.975. The lower view is
the contour map of the upper plot.

Fig. 5. Time evolution of the initial perturbation, 0.025×
exp[−(x/2 − 10)2], for α = 0.2 and V0 = 0.975. The lower
view is the contour map of the upper plot.

Fig. 6. Time evolution of the initial perturbation, −0.025×
exp[−(x/2− 10)2], for α = 0.2 and V0 = 0.975. The lower view
is the contour map of the upper plot.
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analysis (solving numerically he full set o fluid equations).
The results which have been found in this investigation
can be summarized as follows.

(i) The presence of the population of nonthermal (ener-
getic) electrons modifies the nature of ion-acoustic solitary
structures and allows the coexistence of compressive and
rarefactive solitary waves. It is found that for α > 0.155
compressive and rarefactive solitary waves exist together.

(ii) It is shown that as we increase α, the minimum
value of the Mach number (soliton velocity normalized
to ion-acoustic speed) for which rarefactive solitary waves
exit, increases.

(iii) To compare the results obtained by the reduc-
tive perturbation method with those by pseudo-potential
method it is found that in small amplitude limit either
compressive or rarefactive solitary waves are found to ex-
ist whereas in complete theory they may exist together. In
the small amplitude limit both the analyses give the same
results.

(iv) It is found that as we increase the Mach number,
the amplitude of both the compressive and rarefactive soli-
tary waves increases whereas their width decreases. It is
also shown that as we increase the value of α, the ampli-
tude of the positive solitary waves increases whereas that
of negative solitary waves decreases. However the width of
both types of solitary structures increases with increasing
the value of the parameter α.

(v) The behaviour of time-dependent positive solitary
structures seems to be typical. The initial positive distur-
bance breaks up into a series of solitary waves with the
largest in front. However, the behaviour of the rarefactive
solitary waves is quite different. These waves appear to be
unstable and produce compressive waves at a later time.

This analysis may be of relevance to observations in the
magnetosphere of density depressions. A possible scenario
is that lower hybrid turbulence produces, through modu-
lational instability, cavities which collapse until the lower
hybrid wave amplitude is sufficient to trap and accelerate
a substantial number of electrons [14,15]. The damping of
the turbulence could then leave a cavity and also create
just the kind of energetic electron population necessary
for it to live on as an ion-acoustic solitary structure no
longer supported by the ponderomotive pressure of the
high frequency turbulence. However, the type of electron
distribution we have looked at is common to many space

and laboratory plasmas in which wave damping produces
an electron tail, so the theory may be of more general
interest.

It may be added here that effects of ion-temperature,
external magnetic field and obliqueness on these time-
dependent ion-acoustic solitary structures are also prob-
lems of current interest, but beyond the scope of the
present analysis.
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